Five years on and questions still remain over the Deepwater Horizons oil spill, where millions of gallons of crude oil were spewed into the Gulf of Mexico. Perhaps the most pressing is how oil might be best cleaned up should such an environmental catastrophe occur in the future. A team of researchers in Australia claim to have found an answer, developing a special porous material that is claimed to soak up to 33 times its own weight in oil and organic solvents.
Scientists all around the world have been hard at work on materials that might aid in the aftermath of events such as the BP disaster. Stainless steel oil-trapping meshes, super-absorbent polymers and floating polythylene pads are just a few examples that have shown recent promise. Among this global task force is a team of researchers from Australia's Deakin University, who have been chipping away at a solution for some time.
The researchers found some initial success two years ago when they developed a boron nitride powder known as "white graphite," which exhibited oil-absorption properties. While promising, there was still a major hurdle to overcome, namely the fact that powder can't simply be tossed onto an oil slick. So the team set about working out how the special powder could be bound to a sponge to soak up oil, separating it from the water in the process.
Their approach involved breaking the boron nitride powder down intro atomically thin nanosheets, consisting of tiny flakes measuring only several nanometers apiece in thickness. The flakes also bear microscopic holes that serve to boost the material's surface area per gram to the size of five and a half tennis courts.
"The pores in the nanosheets provide the surface area to absorb oils and organic solvents up to 33 times its own weight," says Dr Weiwei Lei, lead researcher of the team's paper.
In addition, the material is said to be flame-resistant and suitable for use in flexible and transparent electrical and heat insulation, along with other potential applications. The researchers are now looking for industry partners to begin trialing the technology, where they say it could be adapted to form ultralight aerogels and membranes to clean up oil spills.



Researchers from the University of Alexandria have developed a cheaper, simpler and potentially cleaner way to turn seawater into drinking water than conventional methods.

This could have a huge impact on rural areas of the Middle East and North Africa, where access to clean water is a pressing issue if social stability and economic development is to improve.

Right now, desalinating seawater is the only viable way to provide water to growing populations, and large desalination plants are now a fact of life in Egypt and other Middle Eastern countries.

Most of these plants rely on a multi-step process based on reverse osmosis, which requires expensive infrastructure and large amounts of electricity. These plants release large quantities of highly concentrated salt water and other pollutants back into the seas and oceans as part of the desalination process, creating problems for marine environments.

That’s why the race is on to find a cheaper, cleaner and more energy-efficient way of desalinating sea water.

In a paper published last month in the journal, Water Science & Technology, researchers Mona Naim, Mahmoud Elewa, Ahmed El-Shafei and Abeer Moneer announced that they have developed a new way to purify sea water using materials that can be manufactured easily and cheaply in most countries, and a method that does not rely on electricity.

The technology uses a method of separating liquids and solids called pervaporation. Pervaporation is a simple, two-step process – the first step involves filtering the liquid through a ceramic or polymeric membrane, while the second step requires vaporizing and collecting the condensed water. Pervaporation is faster, cleaner and more energy efficient than conventional methods, not least because the heat required for the vaporization stage does not necessarily have to be electrically generated.

Pervaporation is not new – it has been in use for many years. But the membrane used in step one has been expensive and complicated to manufacture.

The breakthrough in this research is the invention of a new salt-attracting membrane embedded with cellulose acetate powder for use in step one of the pervaporation process. Cellulose acetate powder is a fiber derived from wood pulp and is, according to the researchers, cheap and easy to make in any laboratory.